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Quantum versus classical decay laws in open chaotic systems
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~Received 18 July 1997!

We study analytically the time evolution in decaying chaotic systems and discuss in detail the hierarchy of
characteristic time scales that appeared in the quasiclassical region. There exist two quantum time scales: the
Heisenberg timetH and the timetq5tH /AkT ~with k@1 andT being the degree of resonance overlapping and
the transmission coefficient, respectively! associated with the decay. Iftq,tH the quantum deviation from the
classical decay law starts at the timetq and are due to the openness of the system. Under the opposite condition
quantum effects in intrinsic evolution begin to influence the decay at the timetH . In this case we establish the
connection between quantities which describe the time evolution in an open system and their closed counter-
parts.@S1063-651X~97!50711-2#

PACS number~s!: 05.45.1b, 24.30.2v
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In a recent paper@1# G. Casatiet al., using numerical
simulations in the kicked rotor model with relaxation, ha
demonstrated that a new time scale exists for a deca
quantum system in the deep quasiclassical region. After
time, which is much less than the Heisenberg timetH
52pr ~with r being the mean level density and\51), the
decay law begins to deviate from the classical one.

The aim of the present paper is to show that such a t
scale is, in fact, a general feature of open quantum cha
systems and is related to peculiarities in fluctuations of
resonance widths. We describe these fluctuations in
framework of the random matrix approach and employ
formalism of the effective non-Hermitian Hamiltonian whic
is commonly used in the theory of resonance scattering@2,3#.

Generally, decay properties of open quantum systems
related to fluctuations in complex eigenvalues~resonance en
ergies! En5En2( i /2)Gn of the effective HamiltonianH via
the two-point correlator of the Green’s operatorG(E)5(E
2H)21. As typical examples one can mention theS-matrix
@2,4–6# or time delay@7–10,14# correlation functions. The
simplest quantity of such a kind is the leakage of the no
inside an open system

P~ t !5~1/N!^ Tr$exp~ iH†t !exp~2 iHt !%& , ~1!

which is a somewhat simplified version of the decay fun
tions considered in Ref.@5#. Here, the angle brackets stan
for the random matrix ensemble average, and the equ
lence of spectral and ensemble averages is implied@11#. It is
easy to see that similar quantity~without the ensemble aver
aging! has been numerically evaluated in@1#. In the case of a
closed systemP(t)[1 at any time. The time dependence
Eq. ~1! appears due to the anti-Hermitian part of the opera
H. The well-known relation between the time evolution o
erator exp(2iHt) and the Green’s functionG(E) enables one
to representP(t) in the form of the Fourier integral

P~ t !5
1

4p2N
E

2`

`

d«e2 i«tE
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In the eigenbasis of the effective Hamiltonian the trace in E
~1! can be represented in the form

P~ t !5
1

N K (
n,n8

Un8n
2 exp$2 i ~En2En8

* !t%L ~3!

5E
2`

`

d«e2 i«tE
0

`

dGe2GtR~«,G! ~4!

whereR(«,G) denotes

R~«,G!5
1

NK (
n,n8

Un8n
2 d@«2~En2En8!#dFG2

Gn1Gn8
2 G L

and Un8n5^cn8ucn& is the Bell-Steinberger nonorthogona
ity matrix @12# of the eigenvectorsucn& of H. This matrix
differs from the unity only if resonances overlap. It is wor
noting that, contrary to the« dependence of the functio
R(«,G) determined by the level spacings along the real
ergy axis, itsG dependence is governed by widths the
selves. Therefore, the decay law cannot be directly relate
the distancesA(En2En8)

21(Gn2Gn8)
2/4 between reso-

nance levels in the complex energy plane. This is contrar
what was conjectured in Ref.@1#.

Prior to exact calculatingP(t) we would like first to per-
form qualitative analysis. As it will be justified below by th
exact calculation, the main features ofP(t) can be under-
stood already from calculation of the diagonal part

Pd~ t !5
1

NK (
n

e2GntL 5E
0

`

dGP~G!e2Gt . ~5!

Here we put approximatelyUnn51, neglecting its smooth
dependence on the indexn. The functionP(G) is the distri-
bution of the resonance widths. This function is explicit
known @13,14# for the case of the unitary ensemble whic
corresponds to the systems with the broken time-reve
symmetry. Therefore, we use this ensemble to demons
our general statements. In Ref.@14# detailed analysis of the
width distribution has been performed, in particular, conv
nient for our purposes integral representation
R4911 © 1997 The American Physical Society
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P~h!5
1

kh2

1

~M21!! Ehk~12T!/T

hk/T

dje2j1M lnj ~6!

is given, withh5G/GW being the decay width measured
the units of the Weisskopf width@15,16#

GW5MT/2pr , ~7!

whereT is the transmission coefficient and the dimensionl
parameterk52prGW5MT characterizes the degree
resonance overlapping. The rate of small widths diminis
rapidly when the numberM of ~statistically equivalent! open
decay channels grows. For small overlapping,k!1, the den-
sity P(h) simplifies to the well-knownxM

2 distribution.
However, quasiclassics corresponds toM@1 and strong
overlappingk@1 @16#. In this case the width distribution
decreases exponentially atG,GW and follows the power law
;(GW /G)2 within some domain aboveGW . In the classical
limit M ,r→` but GW is kept fixed and identified with the
classical escape rate@16#, an empty strip appears below th
valueGW @17,6#.

Substituting Eq.~6! in Eq. ~5! and changing the order o
integration, we come to the expression

Pd~ t !5
1

TE0

T/~12T! dj

~11j!2
expH 2M lnF11

11j

M
GWt G J ,

~8!

which is still exact inM andT. In the classical limit defined
above the first term in the 1/M expansion of the logarithm in
Eq. ~8! gives Pd(t)5Pcl(t)p(t), wherePcl(t)5exp(2GWt)
is the classical decay probability which follows from th
semiclassical periodic orbit theory@19# andp(t) is a slowly
varying factor, the proper calculation of which lies beyo
the diagonal approximation. Further terms of the 1/M expan-
sion can be neglected for the times appreciably less than
characteristic time

tq5AMtW5Ak/TtW5tH /AkT , ~9!

wheretW[1/GW is the characteristic lifetime of the system
The quantum time scaletq is similar to that found in Ref.@1#
~see also@20#!. In the mesoscopic systems the typical li
time is given by the Thouless time@18#. Therefore, the con-
nection tH5ktW shows that our overlapping parameterk
plays the role analogous to the dimensionless conductan
the mesoscopic physics. We note in this respect that the
tW /tq differs from that conjectured in Ref.@1# by an addi-
tional factorAT, which depends on the strength of couplin
to channels. It is also worth noting that the timetq appears
also in the relaxation phenomena in disordered conductor
well @21,22#.

The next-to-leading term of the expansion being positi
quantum corrections slow down the decay law att.tq . Af-
ter this time crossover occurs to the asymptotic power la

Pd
~as!~ t !5k21~GWt/M !2M , ~10!

which is characteristic for open quantum systems@16#. As it
will be demonstrated below, this expression correc
matches the exact result. The fact that the diagonal appr
s
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mation properly reproduces the asymptotic behavior was
noted in @23#. One can easily see from Eq.~5! that such a
power behavior comes from the influence of the widt
which are smaller thanGW . Their rate differs from zero as
long as the parameter 1/M remains finite.

Qualitative arguments presented above can be put o
rigorous ground. Powerful supersymmetry technique@24,2#
enables us to perform exact calculations in Eq.~2!. Skipping
the details of quite a standard calculation, we concentrate
the analysis of the result. For the case of unitary symmetr
reads

P~ t !5E
21

1

dl0E
1

`

dl1m~l i ! f ~l i !d„t/tH2~l12l0!/2…

3F11T~l021!/2

11T~l121!/2GM

, ~11!

wherem(l i)5(l12l0)22 is the measure of integration@24#
and f (l i)5(l1

22l0
2)/2. The openness of the system is co

tained in the last ‘‘channel’’ factor in Eq.~11!. Actually, the
structure of the expression~11! is of universal nature for
different quantities that describe the time evolution of a c
otic quantum system. It consists of the integration with t
measure which is specific for the chosen ensemble, the c
nel factor, and the preexponentf (l i). The latter is the only
factor that depends on the concrete quantity conside
Since the time dependence related to decay properties co
just from the channel factor, our analysis is of quite a gene
meaning.

At t,tH the decay probability~11! can be represented i
the form

P~ t !5E
0

1

dn@11~122n!t/tH#

3expFM lnS 12
GWt/M

11~12n!GWt/M D G , ~12!

whereas att.tH it looks like

P~ t !5e2M ln~11GWt/M !E
0

1

dn@11~122n!tH /t#

3F 12nT

12nT/~11GWt/M !G
M

. ~13!

In the classical limit~see above! simple calculation leads to
the classical decay lawPcl(t).

The peculiarities of quantum deviation from the classi
time evolution depend significantly on the ratiotH /tq

5AkT. If kT@1, so thattW!tq!tH , the analysis of Eq.
~12! goes along the similar way as described below Eq.~8!
and leads to the same conclusions. In the opposite casekT
!1 ~but still k@1, which implies small values of the trans
mission coefficientT) one arrives, by inspecting the integr
factor in Eq.~13!, at the general relation

Popen~ t !5~11GWt/M !2MPclosed~ t ! , ~14!
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which remains valid until the timet f5tW /T5tq /AkT
5tH /kT. Here Pclosed(t) is the Fourier transform of the
spectral correlation function which describes the time evo
tion in the corresponding closed system. Parallel supers
metry calculation of the functionP(t) for the case of the
orthogonal ensemble~which corresponds to chaotic system
with time-reversal symmetry! gives instead of Eq.~11! an
expression of similar structure but with obvious chang
which are characteristic to the symmetry class conside
We only mention that the channel factor contains the po
M /2 rather thanM . Therefore, the same relation~14! with M
substituted byM /2 is valid also for time-reversal invarian
systems.

The decay factor (11GWt/M )2M is equivalent to the
classical exponent until the timetq . However, in the taken
case the Heisenberg timetH is smaller thantq , which yields
the influence of quantum effects on the time evolution
the functionPclosed(t). At last, after the timekt f5tH /T the
asymptotic regimeP(as)(t);(GWt/M )2M appears with a
rin

rs

rs

s,
-
-

s
d.
r

proportionality coefficient depending on the quantity cons
ered. In the case of the function~1! its asymptotics coincides
with that given by Eq.~10!.

In conclusion, even in the quasiclassical domain there
ists a finite probability of the widths less than the classi
escape rateGW . This leads to the appearance of the ne
quantum time scaletq5Ak/TtW5tH /AkT associated with
the decay. The parameter of resonance overlappingk@1
plays the role analogous to the dimensionless conductanc
condensed matter physics. The quantum effects begin to
fluence the time evolution starting from the timetq if tq /tH

51/AkT!1 and from the Heisenberg timetH under the op-
posite condition. In the latter case the relation~14! holds
connecting the time evolution in an open system with
closed counterpart.
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