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Quantum versus classical decay laws in open chaotic systems
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We study analytically the time evolution in decaying chaotic systems and discuss in detail the hierarchy of
characteristic time scales that appeared in the quasiclassical region. There exist two quantum time scales: the
Heisenberg timey, and the timei,=ty, 1\J«T (with k>1 andT being the degree of resonance overlapping and
the transmission coefficient, respectivefissociated with the decay.tif<t, the quantum deviation from the
classical decay law starts at the titgeand are due to the openness of the system. Under the opposite condition
quantum effects in intrinsic evolution begin to influence the decay at thetfimén this case we establish the
connection between quantities which describe the time evolution in an open system and their closed counter-
parts.[S1063-651X97)50711-2

PACS numbd(ps): 05.45+b, 24.30—v

In a recent papefl] G. Casatiet al, using numerical In the eigenbasis of the effective Hamiltonian the trace in Eq.
simulations in the kicked rotor model with relaxation, have (1) can be represented in the form
demonstrated that a new time scale exists for a decaying

guantum system in the deep quasiclassical region. After this 1 2 . *
time, which is much less than the Heisenberg tite P(t)= N< E Un’neXp{_'(S“_gn’)t}> ©)
=2mp (with p being the mean level density aid=1), the '
decay law begins to deviate from the classical one. w0 w0
The aim of the present paper is to show that such a time =f dse‘istf dl'e "'R(e,I') 4
—» 0

scale is, in fact, a general feature of open quantum chaotic

systems and is related to peculiarities in fluctuations of the

resonance widths. We describe these fluctuations in th&hereR(e.I') denotes

framework of the random matrix approach and employ the 1 C.aT.,

formalism of the effective non-Hermitian Hamiltonian which R(¢ ") = N< > Uﬁ,ng[g —(Ep— Enr)]ﬁ[r— _non
n,n

2

is commonly used in the theory of resonance scattefrf]. >
Generally, decay properties of open quantum systems are

related to fluctuations in complex eigenvalfessonance en- andU,,=(#,/|#,) is the Bell-Steinberger nonorthogonal-

ergie$ £,=E,—(i/2)I', of the effective Hamiltoniart{ via ity matrix [12] of the eigenvector$y,) of M. This matrix

the two-point correlator of the Green’s operatg(f) = (€ differs from the unity only if resonances overlap. It is worth

—H)—l, As typical examples one can mention tBenatrix noting that, contrary to the dependence of the function

[2,4—6 or time delay[7—10,14 correlation functions. The R(e,I') determined by the level spacings along the real en-

simplest quantity of such a kind is the leakage of the nornergy axis, itsI" dependence is governed by widths them-

inside an open system selves. Therefore, the decay law cannot be directly related to
the distances\(E,—E,)*+(I',—T,)%/4 between reso-

1) nance levels in the complex energy plane. This is contrary to
what was conjectured in Reffl].

Prior to exact calculating?(t) we would like first to per-
which is a somewhat simplified version of the decay func-form qualitative analysis. As it will be justified below by the
tions considered in Ref5]. Here, the angle brackets stand exact calculation, the main features B{t) can be under-
for the random matrix ensemble average, and the equivatood already from calculation of the diagonal part
lence of spectral and ensemble averages is impliéd It is L
easy to see that similar quantitywithout the ensemble aver- _ * _
aging has been numerically evaluated . In the case of a Pq(t)= N< En: € Fnt> - fo drP(Tye . ®)
closed systenfP(t)=1 at any time. The time dependence in
Eq. (1) appears due to the anti-Hermitian part of the operatoHere we put approximately) ,,=1, neglecting its smooth
H. The well-known relation between the time evolution op-dependence on the index The functionP(I') is the distri-
erator exp¢-iHt) and the Green's functiof(E) enables one bution of the resonance widths. This function is explicitly

P(t)=(1N){ Tr{exp(iHt)exp —iHL)}),

to represen®P(t) in the form of the Fourier integral known [13,14 for the case of the unitary ensemble which
corresponds to the systems with the broken time-reversal
1 . . symmetry. Therefore, we use this ensemble to demonstrate
P(t)= f dsefistf dE< Trgl B+ 2 gT( E_ f)> our general statements. In R¢L4] detailed analysis of the
47N S - — 2 2 width distribution has been performed, in particular, conve-

(2 nient for our purposes integral representation
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1 1 — mation properly reproduces the asymptotic behavior was first
P(n)= _ZWJ dee §tMné ()  noted in[23]. One can easily see from E¢p) that such a
kn? ( W= power behavior comes from the influence of the widths

L . . . . which are smaller thal'yy. Their rate differs from zero as
is given, with 77:F/_Fw bemg.the decay width measured in long as the parameter/ remains finite.
the units of the Weisskopf widtf5,16 Qualitative arguments presented above can be put on a
_ rigorous ground. Powerful supersymmetry technifé,2]
Fw=MT/2mp, @ enables us to perform exact calculations in &). Skipping

whereT is the transmission coefficient and the dimensionlesghe details of quite a standard calculation, we concentrate on
parameter k=2mply=MT characterizes the degree of the analysis of the result. For the case of unitary symmetry it
resonance overlapping. The rate of small widths diminishe§eads
rapidly when the numbevl of (statistically equivalentopen )
decay channels grows. For small overlappireg 1, the den- _ * . . oy
sity P(7) simplifies to the well-knowny? distribution. P(t)_J’_ld)\OL A1) () S/t = (A=A o)/2)
However, quasiclassics corresponds M>1 and strong
overlappingx>1 [16]. In this case the width distribution
decreases exponentiallyla& I'y, and follows the power law
~(I'w/T")? within some domain abovE,,. In the classical
limit M,p— butT'yy is kept fixed and identified with the
classical escape raf&6], an empty strip appears below the
valueT'\, [17,6].

Substituting Eq(6) in Eq. (5) and changing the order of
integration, we come to the expression

_1 TI(1-T) dé
Pd(t)_ffo (1+§)2ex —Min

M

1+T(No—1)/2 | an

T T -2

wherew(X\;)=(\;—\g) 2 is the measure of integratig@4]
andf(\;)=(\5—\2)/2. The openness of the system is con-
tained in the last “channel” factor in Eq11). Actually, the
structure of the expressiofil) is of universal nature for
different quantities that describe the time evolution of a cha-
1+¢ otic quantum system. It consists of the integration with the
1+ —FWt“ , measure which is specific for the chosen ensemble, the chan-
M nel factor, and the preexponef{t\;). The latter is the only
) factor that depends on the concrete quantity considered.
Since the time dependence related to decay properties comes
just from the channel factor, our analysis is of quite a general
meaning.
At t<ty the decay probabilityl1) can be represented in
the form

which is still exact inM andT. In the classical limit defined
above the first term in the W expansion of the logarithm in
Eq. (8) gives Py(t) =P (t)p(t), whereP(t) =exp(~I'wi)

is the classical decay probability which follows from the
semiclassical periodic orbit theof{9] and p(t) is a slowly
varying factor, the proper calculation of which lies beyond

the diagonal approximation. Further terms of thisl l¥xpan- P(t)= Jldv[1+ (1—-2v)t/ty]
sion can be neglected for the times appreciably less than the 0
characteristic time . F{Ml (1 T\ t/M H "
ex nf1— ,
tq= VMtw= e/ Tty=ty /T, (9) 1+(1—v)Tyt/M

wherety,= 1Ty is the characteristic lifetime of the system. whereas at>t,, it looks like
The quantum time scalg is similar to that found in Re{.1]

(see alsd20]). In the mesoscopic systems the typical life 1
time is given by the Thouless tinjd8]. Therefore, the con- P(t)=e’M'”(1*FWt’M)J' du[1+(1—2v)ty/t]
nection ty= «ty, shows that our overlapping parameter 0
plays the role analogous to the dimensionless conductance in 1—T M
; . N : %
the mesoscopic physics. We note in this respect that the ratio [1_ STI(1T T ot/M) (13

tw/t, differs from that conjectured in Refl] by an addi-
tional factor T, which depends on the strength of coupling
to channels. It is also worth noting that the timgeappears
also in the relaxation phenomena in disordered conductors e i .
The peculiarities of quantum deviation from the classical

well [21,22. ti lution d d significantl th titg, /t
The next-to-leading term of the expansion being positive,Ime evolution depend significantly on the rati /tq

quantum corrections slow down the decay lawat,. Af- - VT- If «T>1, so thatty<ty<ty, the analysis of Eq.

ter this time crossover occurs to the asymptotic power law (12 goes along the similar way as described below .
and leads to the same conclusions. In the opposite €&se

PEI(t) =k YT yt/M) ™M, (100 <1 (but still k>1, which implies small values of the trans-
mission coefficien) one arrives, by inspecting the integral
which is characteristic for open quantum systdi®]. As it factor in Eq.(13), at the general relation
will be demonstrated below, this expression correctly
matches the exact result. The fact that the diagonal approxi- Popedt) = (1+Tyt/M) " MP_osedt) s (19

In the classical limit(see abovesimple calculation leads to
ége classical decay la®(t).
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which remains valid until the timet;=t,/T=t,/\kT  proportionality coefficient depending on the quantity consid-
=ty /kT. Here P.osedt) is the Fourier transform of the ered. Inthe case of the functi@h) its asymptotics coincides
spectral correlation function which describes the time evoluWith that given by Eq(10).

tion in the corresponding closed system. Parallel supersym- In conclusion, even in the quasiclassical domain there ex-
metry calculation of the functioP(t) for the case of the ists a finite probab[llty of the widths less than the classical
orthogonal ensembl@vhich corresponds to chaotic systems €Scape ratd’y . This leads to the appearance of the new
with time-reversal symmetiygives instead of Eq(1]) an duantum time scalé,= '/ Tty=ty/\xT associated with
expression of similar structure but with obvious change§he decay. The parameter of resonance overlappirdl
which are characteristic to the symmetry class considered!@yS the role analogous to the dimensionless conductance in
We only mention that the channel factor contains the powefOndensed matter physics. The quantum effects begin to in-

M/2 rather tharM . Therefore, the same relatioh4) with M luence the time evolution starting from the timgif tq/ty
substituted byM/2 is valid also for time-reversal invariant = L/V«T<1 and from the Heisenberg timg under the op-
systems. posite condition. In the latter case the relatid) holds

The decay factor (+T'yt/M)~M is equivalent to the connecting the time evolution in an open system with its

classical exponent until the timtg . However, in the taken closed counterpart.

case the Heisenberg tinig is smaller thart,, which yields We are grateful to D. Shepelyansky for interesting discus-
the influence of quantum effects on the time evolution viasions and thank A. D. Mirlin and V.G. Zelevinsky for useful
the functionP s {t). At last, after the timect;=t, /T the  remarks. Financial support from INTAS Grant No. 94-2058
asymptotic regimeP@9(t)~(I'yt/M)~M appears with a is acknowledged with thanks.
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